Commutative Association Schemes Whose Symmetrizations Have Two Classes

نویسنده

  • SUNG Y. SONG
چکیده

If a symmetric association scheme of class two is realized as the symmetrization of a commutative association scheme, then it either admits a unique symmetrizable fission scheme of class three or four, or admits three fission schemes, two of which are class three and one is of class four. We investigate the classification problem for symmetrizable (commutative) association schemes of two-class symmetric association schemes. In particular, we give a classification of association schemes whose symmetnzations are obtained from completely multipartite strongly regular graphs in the notion of wreath product of two schemes. Also the cyclotomic schemes associated to Paley graphs and their symmetrizable fission schemes are discussed in terms of their character tables.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The annihilator-inclusion Ideal graph of a commutative ring

Let R be a commutative ring with non-zero identity. The annihilator-inclusion ideal graph of R , denoted by ξR, is a graph whose vertex set is the of allnon-zero proper ideals of $R$ and two distinct vertices $I$ and $J$ are adjacentif and only if either Ann(I) ⊆ J or Ann(J) ⊆ I. In this paper, we investigate the basicproperties of the graph ξR. In particular, we showthat ξR is a connected grap...

متن کامل

On the Nonexistence of Skew-symmetric Amorphous Association Schemes

An association scheme is amorphous if it has as many fusion schemes as possible. Symmetric amorphous schemes were classified by A. V. Ivanov [A. V. Ivanov, Amorphous cellular rings II, in Investigations in algebraic theory of combinatorial objects, pages 39–49. VNIISI, Moscow, Institute for System Studies, 1985] and commutative amorphous schemes were classified by T. Ito, A. Munemasa and M. Yam...

متن کامل

The sum-annihilating essential ideal graph of a commutative ring

Let $R$ be a commutative ring with identity. An ideal $I$ of a ring $R$is called an annihilating ideal if there exists $rin Rsetminus {0}$ such that $Ir=(0)$ and an ideal $I$ of$R$ is called an essential ideal if $I$ has non-zero intersectionwith every other non-zero ideal of $R$. Thesum-annihilating essential ideal graph of $R$, denoted by $mathcal{AE}_R$, isa graph whose vertex set is the set...

متن کامل

Group-Case Commutative Association Schemes and Their Character Tables

Leading towards the classification of primitive commutative association schemes as the ultimate goal, Bannai and some of his school have been trying to • identify the major sources of (primitive) commutative association schemes, • collect known group-case primitive commutative association schemes, and • compute their character tables over the last twenty years. The construction of their charact...

متن کامل

On the Szeged and Eccentric connectivity indices of non-commutative graph of finite groups

Let $G$ be a non-abelian group. The non-commuting graph $Gamma_G$ of $G$ is defined as the graph whose vertex set is the non-central elements of $G$ and two vertices are joined if and only if they do not commute.In this paper we study some properties of $Gamma_G$ and introduce $n$-regular $AC$-groups. Also we then obtain a formula for Szeged index of $Gamma_G$ in terms of $n$, $|Z(G)|$ and $|G|...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003